From phonetic to phonological time

Christopher Geissler
Department of Linguistics
Carleton College

April 15, 2024
Slides available on cageissler.github.io/resources

Roadmap

- Biography
- Phonology, phonetics, and time
- Types of evidence
- Intergestural timing-Tibetan tonality
- Duration tradeoffs-Northern Saami
- Simulated trajectories
- Conclusion

The Swarthmore years...

- Swarthmore '13: Linguistics, Religion
- Study abroad: Tibetan Studies Semester (Dharamsala, India)
- Research project: dialect contact, or religious ethnography?
- Summer with Living Tongues dictionary of Koro
- Thesis: "Towards a phonetic description of Koro"

... a bizarrely linear doctoral program...

- LSA Institute @ UMich: Khalil Iskarous’ Articulatory Phonology
- NYC's Endangered Language Alliance for 1 year
- Yale Linguistics!
- incoming interests: phonetics, phonology, historical ling
- fieldwork in Nepal—dialect contact, based on my paper abroad
- Dissertation combined fieldwork with laboratory experiments

... still employed, so far...

- 2021-2023 @ Heinrich Heine U Düsseldorf
- teaching, setting up new lab, not getting grants
- 2023-2024 @ Carleton
- teaching, collaborating with students
- ... TBA?

...unsoliticted advice.

- ... Ph.D.?
- IFF you want to be in grad school
- ... academic career?
- IFF able to move, internationally, every year, for years
- ... regrets @ Swat?
- dropping Chinese; not taking stats; thesis topic
- honestly wouldn't do differently. Except the thesis.

Roadmap

- Biography
- Phonology, phonetics, and time
- Types of evidence
- Intergestural timing-Tibetan tonality
- Duration tradeoffs-Northern Saami
- Simulated trajectories
- Conclusion

Phonology: basic

Categorical behavior

- In German, voiced consonants are voiceless when they occur at the end of words (but not elsewhere):
- Maus 'mouse' [maus], but plural Mäuse [mэYzِə]
- Rad 'wheel' [Rat], but plural Räder [Rede]
- compare:

Rat 'council' [Rat], but plural Räte [Retə]

Phonology: basic

Categorical behavior

- In German, voiced consonants are voiceless when they occur at the end of words (but not elsewhere):
- Maus 'mouse' [maus], but plural Mäuse [mэYzِə]
- Rad 'wheel' [Rat], but plural Räder [Rede]
- compare:

Rat 'council' [Rat], but plural Räte [Retə]

Linguists are really good at this

Phonology: advanced

Probabilistic behavior

- In English, t/d at the end of a word sometimes isn't there
- rift $=$ [ıIft] or [uff_]; build $=$ [biłd] or [bił]
- More likely among some groups
- More likely in some social contexts
- More likely around some sounds
- More likely in mist than in missed

Phonology: advanced

Probabilistic behavior

- In English, t / d at the end of a word sometimes isn't there
- rift $=$ [uftt] or [uif_]; build $=$ [brłd] or [brł]
- More likely among some groups
- More likely in some social contexts
- More likely around some sounds
- More likely in mist than in missed

Linguists get excited about this

...uh-oh

- Perfect memory
- At least some "deleted" t's/d's are visible in articulation, but not in acoustics
- (Actually it's most)

Midsagittal sections

...uh-oh

- Perfect memory

Gestures!

... but how are they coordinated?

- At least some "deleted" t's/d's are visible in articulation, but not in acoustics
- (Actually it's most)

Midsagittal sections
(Browman \& Goldstein 1988, Purse 2019)

Representational units

Representational units

Roadmap

- Biography
- Phonology, phonetics, and time
- Types of evidence
- Intergestural timing-Tibetan tonality
- Duration tradeoffs-Northern Saami
- Simulated trajectories
- Conclusion

Representational units

Bimanual tapping interlude

Oscillators

- Synchronization in non-speech and speech movements:
- "pa... pa... pa... pa.pa[...]pa.pa.pa.pa"
- "ap... ap... ap... ap.ap.[...]pa.pa.pa.pa"
- Tapping: "in-phase" more stable than "anti-phase" (both more stable than any other phasing)
... in speech too?

CV vs. VC syllables

in-phase

[pa]	
LIPS	Labial closure
TONGUE TIP	
TONGUE BODY	pharyngeal wide

anti-phase

[ap]	
LIPS	abial closure
TONGUE TIP	
TONGUE BODY	pharyngeal wide

CV vs. VC syllables

in-phase

[pa]	
LIPS	Labial closure
TONGUE TIP	
TONGUE BODY	pharyngeal wide

anti-phase

[ap]		
LIPS	Labial closure	
TONGUE TIP		
TONGUE BODY	pharyngeal wide	

CV vs. VC syllables

in-phase

[pa]	
LIPS	Labial closure
TONGUE TIP	
TONGUE BODY	pharyngeal wide

anti-phase

[ap]			
LIPS	labial closure		
TONGUE TIP			
TONGUE BODY	pharyngeal wide		

What about clusters?

- Empirically, onset clusters overlap

What about tone?

- Empirically, V lags following C
- (In lexical tone languages only)

/pá/	
LIPS	labial closure
TONGUE TIP	
TONGUE BODY	pharyngeal wide
pitch (?)	high

Competitive coupling account

- Unifies clusters and tone (neat for typology)
- Unifies syllables (and up?), contrast, and planning

Predictions

- If there is a tone gesture in a syllable:

- C-V timing like in clusters: C-V lag positive, $\sim 50 \mathrm{~ms}$

- If there is no tone in that syllable:
- Simultaneous C \& V:

C-V lag $\sim 0 \mathrm{~ms}$

The perfect test case?

A language where some speakers produce tone and others don't

(Geissler 2019, 2021)

- 4 speakers produce a tone contrast, two do not (images: /mV/)

EMA study

articulatory trajectories

In-phase

Competitive

\mathbf{C}
\mathbf{V}

- H, L tones; 1- and 2-syllable words
- C-V lag as diagnostic of tone
[mu]

(Data: Zhang, Geissler, \& Shaw 2019)

Results: C-V lag

- There is a positive C-V lag... for speakers with and without the tone contrast (and in both tones)
- Competitive Coupling has no explanation for the 50 ms lag

Results: C-V lag

- C-V lag does increase with C duration
- so, the 50 ms lag isn't just a fixed value
- intrinsic account: all speakers anti-phase (ish)
- extrinsic account: gestures and coordination both affect by speech rate

Roadmap

- Biography
- Phonology, phonetics, and time
- Types of evidence
- Intergestural timing-Tibetan tonality
- Duration tradeoffs-Northern Saami
- Simulated trajectories
- Conclusion

Representational units

Northern Sámi quantity distinctions

- 2 vowel lengths
- 3 (!!!) phonological consonant lengths:
- Q1: [viesu] 'house (acc sg)’
- Q2(~Q1): [vies:u] 'house (nom sg)'
- Q2(~Q3): [ruòs:a] 'cross (acc sg)'
- Q3: [r厃̂os::a] 'cross (nom sg)'
- Notice the [$\widehat{\mathrm{uo}}] \sim[\overline{\mathrm{uo}}:]$?

Northern Sámi quantity distinctions

- 2 vowel lengths
- 3 (!!!) phonological consonant lengths:
- Q1: [viesu] 'house (acc sg)’
- Q2(~Q1): [vies:u] 'house (nom sg)'
- Q2(~Q3): [ruòs:a] 'cross (acc sg)'
- Q3: [rûos::a] 'cross (nom sg)'
- Notice the [(uo]~[प्र्:]? [nom sg] has a floating mora

Confirm phonetically

- Predict:

$$
\mathrm{Q} 1<\mathrm{Q} 2(\sim \mathrm{Q} 1)=\mathrm{Q} 2(\sim \mathrm{Q} 3)<\mathrm{Q} 3
$$

shortest
-longest

Phonological effect

3 lengths? 3 lengths.

- Overall:

Q3
longer than
Q2(~Q1) = Q2(~Q3)
longer than
Q1

- S2 might have only two lengths; insufficient data

Phonological or phonetic?

- If phonological:

- If phonetic:

Phonetic effect

Inverse correlation

- Significant inverse relationships (V decrease when C increase) only in underlying Q3 Cs; driven by one speaker
- Trends in expected directions; more data needed

Phonological or phonetic?

- Phonological:
- Q1
- Q2(~Q1)
- Phonetic
- Q3
- Q2(~Q3)

Sámi summary

- For phonologically longest C's, longer C's \rightarrow shorter preceding V's
categorical and continuous timing
- this is over and above the phonological effect
- For phonologically shortest C's, no phonetic effect
- there is only the phonological effect
- ... need more data...

Roadmap

- Biography
- Phonology, phonetics, and time
- Types of evidence
- Intergestural timing-Tibetan tonality
- Duration tradeoffs-Northern Saami
- Simulated trajectories
- Conclusion

Representational units

Task Dynamics (Articulatory Phonology)

(Haken et al. 1985, Saltzman \& Munhall 1989, Nam \& Saltzman 2003)

- Model movement as critically-damped mass-spring oscillator
- Timing is internal to the gesture (sine waves are circles)

General Tau Theory (XT/3C)
 (Lee \& Reddish 1981, Turk \& Shattuck-Hufnagel 2020)

- Model kinematics as gap-closing function
- Time only in regular, system-external time

Which fits data better?

- Predicting landmarks from other landmarks:
- GONS-PVEL-NONS-NOFF-PVEL2-GOFF
[mu]

Which fits data better？

Time？Tau．Position？Oscillator？

白CDO 白 data 追Tau

追 CDO 追 data 追Tau

TD/Tau: Conclusion

- Work in progress!
- Current: full trajectories, not just landmarks
- Results mixed
- Tau better at when landmarks take place
- TD better at where landmarks take place
- This is weird

Roadmap

- Biography
- Phonology, phonetics, and time
- Types of evidence
- Intergestural timing-Tibetan tonality
- Duration tradeoffs-Northern Saami
- Simulated trajectories
- Conclusion

Representational units

习ुषास
 Thank you!

Pocket slides

What about diphthongs?

- Can approximately describe with in-phase/anti-phase
- How do diphthongs change when they get shorter?

<five $>$ /fäv/		
LIPS	labiodent. critical	
TONGUE TIP		
TONGUE BODY	pharyngeal wident. critical	
VELUM	palatal narrow	
GLOTTIS		

Articulatory study

Geissler et al. (2021), Geissler (2021ch4)

- H1: variation in timing conditioned by presence/absence of lexical tone
- speakers with tone contrast will have competitive coupling (pos. C-V lag)
- speakers without tone contrast will have in-phase C-V timing (no C-V lag)
- H2: timing convergence:
- all speakers will have similar coordination patterns despite interspeaker variation in presence/absence of tone
- What kind of tone contrast is there?
- If $\mathrm{H}-\varnothing$, then difference will be visible in high vs. low tone words
- If H -L, then no difference in timing by tone.

EMA Study conclusions

- H1: variation in timing conditioned by presence/absence of lexical tone
- speakers with tone contrast will have competitive coupling (pos. C-V lag)
- speakers without tone contrast will have in-phase C-V timing (no C-V lag)
- \checkmark H2: timing convergence:
- all speakers have similar coordination patterns despite interspeaker variation in presence/absence of tone
- What kind of tone contrast is there?
- If $\mathrm{H}-\varnothing$, then difference will be visible in high vs. low tone words
- \boldsymbol{V} If \mathbf{H}-L, then no difference in timing by tone.
- Significant inverse relationships (V decrease when C increase) only in underlying Q3 Cs; driven by one speaker
- Trends in expected directions; more data needed

The temporal basis of complex segments

Shaw et al. 2019

The temporal basis of complex segments

Shaw (2019): predictions

(a) Complex segment-no lag

(b) Segment sequence-no lag

(c) Complex segment—positive lag

(d) Segment sequence—negative lag

Figure 1: Hypothesized gestural coordination pat-

Anti-Phase - lag
 terns for complex segments (a), (c) and segment sequences (b), (d)

The temporal basis of complex segments Shaw (2019): results

Figure 4: Correlations for the data from the English experiment

Figure 2: Correlations for the Russian data

Tibetan dialects

Tibetan文站

- "archaic"/ "cluster"
- "innovative"/ "non-cluster"
- dialect continuum
- post-1959 diaspora

Approx. extent of tone

Xinjiang Uyghur

Dialects: Natural laboratory

- tonogenesis
- laryngeal variation
- cluster simplification
- vowel shifts, spirantization, retroflexion, palatalization
- evidential, honorifics, modality, etc.

Written (Classical)	Balti (Western)	Rebkong (Northeastern)	Tokpe Gola (Central)	Gloss
Tibetan				
khrag	[kssk]	[t'ç γ]	[th ${ }^{\mathrm{h}} \mathrm{k} \mathrm{k}$] ([thák])	'blood'
rtswa	[xstsoa]	[xtsa]	[tsá]	'grass'
spyang ki	[spjay.'ku]	[xt¢̆ay. ${ }^{\text {'k }}$ h γ]	[t Jáy.gú]	'wolf'
bcu bdun	[t¢̣ub.'dun]	[t¢ $\gamma \mathrm{b} . \mathrm{d} \mathrm{d} r \mathrm{n}$]	[t]úp.tứ] ([ţúp.týy)	'seventeen'

Tonogenesis

(tonal dialects only)

- Voiceless onsets $>$ high tone
- Voiced onsets > low tone
- *phar 'over there' > H *sa 'earth' > H
- *bar 'between' > L *za 'eat' > L *mar 'butter' > L
- Sonorants with pre-initial > high tone
- *sman 'medicine' > H

Laryngeal contrasts

	Etymological onsets							Innovative features
Orthography	줜	य	च	작	स	*	д®	
Old Tibetan	$\mathrm{s}{ }^{\text {pa }}$	$p^{\text {ha }}$	ba	$s^{\text {² }} \mathrm{ba}$	sa	za	$\mathrm{b}^{\text {² }} \mathrm{za}$	aspiration allphonic
Northeastern and Western dialects	spa	$\mathrm{p}^{\text {ha }}$	$\begin{aligned} & \mathrm{ba} \sim \\ & \text { wa } \end{aligned}$	вba	sa	za	za	cluster simplification aspirated/unaspirated contrast
Eastern dialects	pá	phá	pà	bà	sá	zà	zà	tonogenesis cluster simplification
Central dialects (Lhasa)	pá	$\mathrm{p}^{\text {há }}$	$p^{\text {hà }}$	pà	sá	sà	sà	voiced clusters > voiceless voiced simplex $>$ aspirated

Cross-linguistic evidence (after)

No tone, no C-V lag
Arabic
Catalan
English
German
Georgian
Italian
Swedish
Serbian

$$
\begin{aligned}
& \text { C-V lag } \\
& \text { Mandarin } \\
& \text { Thai } \\
& \text { Tibetan } \\
& \hline \\
& \hline
\end{aligned}
$$

Romanian

Coordinating gestures in time

- Gestural coupling modes:
- In-phase coupling: (synchronous) and Anti-phase coupling (sequential) are most stable
- Competitive coupling: combination of inphase and anti-phase coupling relations
- Eccentric coupling: one coupling relation, just not intrinsically stable

Anti-Phase
C------ C

Eccentric

Two systems of laryngeal contrasts

even in speakers with no F0 contrast (!!!)

- Both conditioned by etymological tone category:
- Left speaker
- no prevoicing
- ilong V̄ÖTí only with H tone
- Right speaker:
- prevoicing with L tone
- 'Tong V̄ŌTi'i withboth tones

Does H have higher pitch than L?

Yes for 11/19, no for 7/19

Consonant and tone categories

<five> study: methods

O'Reilly, Geissler, \& Tang (2023)

- Ideal test case?
- diphthongs: all four modes
- C's with lips, V's with tongue
- available data

Timing in phonology and/or phonetics?

- "Discrete Phonology" vs. "Gradient Phonetics"
- Speech timing as phonology
- Is timing intrinsic or extrinsic to phonology?
- Are gestures coordinated at beginning or end?
- Symbolic vs. phonetically-enriched representations?

