How Articulatory is Phonology?

Christopher Geissler

Department of Linguistics Carleton College

January 25, 2024 Slides available on <u>cageissler.github.io/resources</u>

1

Roadmap

- "Discrete phonology, continuous phonetics"
- Coupled oscillators: timing in phonology
- Problems
 - Unexpected coupling relations
 - Surface timing goals
- Conclusion

Discrete phonology Discrete behavior

- at the end of words (but not elsewhere):
 - *Rad* 'wheel' [*Rat*], but plural *Räder* [*Rεde*]
 - compare: Rat 'council' [Rat], but plural Räte [RET]

• In German, voiced consonants are voiceless when they occur

Intro-level phonetics **Continuous behavior**

- *Rat/Rad* 'wheel' [Rat]
- Where does the voicing end?
 - The whole closure?

 - Periodic sound?
 Regular periodicity?^{TI}

Time (s)

2.035

5000

Probabilistic discrete phonology

- In English, t/d at the end of a word sometimes isn't there
 - $rift = [uft] or [uf_]; build = [bild] or [bil]$
 - More likely among some groups
 - More likely in some social contexts
 - More likely around some sounds
 - More likely in *mist* than in *missed*

Articulatory complications

- Perfect memory
- At least some "deleted" AUDIO t's/d's are visible in WAVEFORM articulation, but not in acoustics TONGUE
 - (Actually it's most)

- VELUM
- REAR
- BLADE
- LOWER LIP

JAW

Midsagittal sections

(Browman & Goldstein 1988, Purse 2019)

<u></u>
_
_
u;
·······
····

Gestures **In Articulatory Phonology**

- goal-directed movement (Pouplier 2020)
 - Motor equivalence
 - Equifinality

• Abstract, hierarchical control unit for linguistically-defined

A Theory of the Interface

• "Phonology"

• Phonetic observables

A Theory of the Interface

• "Phonology"

• Phonetic observables

Roadmap

- "Discrete phonology, continuous phonetics"
- Coupled oscillators: timing in phonology
- Problems
 - Unexpected coupling relations
 - Surface timing goals
- Conclusion

Oscillator model

(Haken et al. 1985, Saltzman & Munhall 1989, Nam & Saltzman 2003)

- Asymptotically approaches target (equilibrium position) as fast as possible

• Model kinematics as critically-damped mass-spring oscillator

Oscillator model

(Haken et al. 1985, Saltzman & Munhall 1989, Nam & Saltzman 2003)

Note absence of target time

Bimanual tapping interlude

Oscillators

- Synchronization in non-speech and speech movements:
 - "pa... pa... pa... pa.pa[...]pa.pa.pa.pa"
 - "ap... ap... ap... ap.ap.[...]pa.pa.pa.pa"
- Tapping: "in-phase" more stable than "anti-phase" (both more stable than any other phasing)
 ... in speech too?

Oscillators

- Synchronization in non-speech and speech movements:
 - "pa... pa... pa... pa.pa[...]pa.pa.pa.pa"
 - "ap... ap... ap... ap.ap.[...]pa.pa.pa.pa"
- Tapping: "in-phase" more stable than "anti-phase" (both more stable than any other phasing)
 ... in speech too?

Oscillators

- Synchronization in non-speech and speech movements:
 - "pa... pa... pa... pa.pa[...]pa.pa.pa.pa"
 - "ap... ap... ap... ap.ap.[...]pa.pa.pa.pa"
- Tapping: "in-phase" more stable than "anti-phase" (both more stable than any other phasing)
 ... in speech too?

Can we really generalize from cyclic to non-cyclic tasks?

CV vs. VC syllables

in-phase

anti-phase

CV vs. VC syllables

in-phase

anti-phase

What about clusters?Empirically, onset clusters overlap

What about tone?

- Empirically, V lags following C
 - (In *lexical tone* languages only)

(Gao 2008, Niemann et al. 2011, Karlin 2014)

g C only)

/pá/						
LIPS	labial closure					
TONGUE TIP						
TONGUE BODY	pharyngeal wide					
pitch (?)			high			

Competitive coupling account

- Unifies clusters and tone (neat for typology)
- Unifies syllables (and up?), contrast, and planning

Roadmap

- "Discrete phonology, continuous phonetics"
- Coupled oscillators: timing in phonology
- **Problems**
 - Unexpected coupling relations
 - Surface timing goals
- Conclusion

Predictions of Coupled Oscillator Model

- If there is a tone gesture in a syllable:
 - C-V timing like in clusters: C-V lag positive, ~50ms
- If there is no tone in that syllable:
 - Simultaneous C & V: C-V lag ~0ms

The perfect test case? A language where some speakers produce tone and others don't

4 speakers produce a tone contrast, two do not (images: /mV/)

⁽Geissler 2019, 2021)

EMA study articulatory trajectories

- [p p^h m]: distance between lip sensors
- $[i] \rightarrow [u \ o \ a]$: tongue dorsum retraction
- H, L tones; 1- and 2-syllable words
- C-V lag as diagnostic of tone

(Mview software: Tiede 2005)

Results: C-V lag in all speakers

• There is a positive C-V lag... for speakers with *and* without the tone contrast (and in both tones)

no.contrast

Results: C-V lag ~ C duration

- But again—holds for both tonal and non-tonal speakers

• C-V lag increases with C duration—not necessarily a problem

Cross-linguistic evidence

No tone, no C-V lag Arabic Catalan English German Georgian Italian Romanian

Tone

Swedish Serbian

C-V lag Mandarin Thai Tibetan

also Tibetan

More unexpected tone timing Karlin (2022)

- Coordination of tones in two BCS dialects: Belgrade and Valjevo Serbian
- Valjevo rising accent: [õ.mla] target of H timed to start of V2

A Theory of the Interface

Tibetan: C-V lag without tone Serbian: target-timed tone

A Theory of the Interface

Tibetan: not just in-phase/anti-phase Serbian: coordinate targets, not just onsets

> Tibetan: C-V lag without tone Serbian: target-timed tone

Roadmap

- "Discrete phonology, continuous phonetics"
- Coupled oscillators: timing in phonology
- Problems
 - Unexpected coupling relations
 - Surface timing goals
- Conclusion

A Theory of the Interface

Are model parameters adequate? Do the curves look right?

Checking Tibetan results with simulations TADA: Task Dynamics Application (Nam et al. 2004)

Timing's ok... but the shapes are off (Geissler 2022)

• L: Tibetan [má]; R: simulated in-phase, competitive, anti-phase

37

General Tau model (Lee 1998, Elie et al. 2023)

.na + bv + k(x - C) = 0

Fitting data with analysis-by-synthesis: <five> Diphthong targets can't be separated with kinematic data

- Make a simulation, then tweak it, \rightarrow 34,000 simulations Compare to 525 tokens from X-ray Microbeam Database

Bad fit

Good fit

Simulated

Real

Analysis-by-synthesis: <five>(O'Reilly, Geissler, & Tang 2023) Diphthong targets can't be separated with kinematic data

- Make a simulation, then tweak it, \rightarrow 34,000 simulations

Bad fit

Compare to 525 tokens from X-ray Microbeam Database

Analysis-by-synthesis: <five>(O'Reilly, Geissler, & Tang 2023) Simulated four articulatory manifestations of duration

- Mostly overlap/shortening... sort of

Interim findings Analysis-by-Synthesis of <five>

- We got some results!
 - [a] portion of diphthong timed to rest of word
 - [I] portion more free to vary across tokens
- Still a lot to do
 - Extremely computationally-intensive
 - Which dimensions of variation? How much to vary?
 - What's the best way to compare curves?

imed to rest of word ry across tokens

y-intensive ation? How much to vary? mpare curves?

So... endpoint timing?

- Fundamentally, capturing duration is just much easier when you can use endpoints
 - English speech corpus_(Elie et al. 2023)

43

So... endpoint timing?

- Fundamentally, capturing duration is just much easier when you can use endpoints
 - English speech corpus_(Elie et al. 2023)
 - Tibetan landmarks
 Geissler

So... endpoint timing?

- Fundamentally, capturing luration is just much easier when you can use endpoints English speech corpus_(Elie et al. 2023) duration is just much easier when you can use endpoints

 - Tibetan landmarks
 - (Geissler & Nellakra 2024?) • Dinka length contrasts

(Turk & Shattuck-Hufnagel 2020) (Remijsen & Gilley 2008)

Roadmap

- "Discrete phonology, continuous phonetics"
- Coupled oscillators: timing in phonology
- Problems
 - Unexpected coupling relations
 - Surface timing goals
- Conclusion

What have we learned?

- Timing patterns not predicted by oscillators
 - Tibetan tone-like C-V lag without tone
- Oscillators miss having endpoints
 - Struggle to get shapes right
 - Some evidence for surface durations, or even gestural endpoint timing

So... how articulatory is phonology? More and less than you might think

"Phonology" Need to specify:
 durations & endpoints
 diverse coupling modes

Phonetic observables

Cautiously optimistic about Tau

- Endpoints & durations are a big help
- Support in biology, psychology
- Still much work to be done in coordination *other than* synchronous movement
 - ... stay tuned!

यमगरम्ज Thank you!

Pocket slides

What about diphthongs?

- Can approximately describe with in-phase/anti-phase
- How do diphthongs change when they get shorter?

<five > /faiv/

LIPS	labiodent. critical	la
TONGUE TIP		
TONGUE BODY	pharyngeal wide	palatal narrov
VELUM		
GLOTTIS	wide	

(Goldstein et al. 2000)

with in-phase/anti-phase when they get shorter?

Articulatory study Geissler et al. (2021), Geissler (2021ch4)

- H1: variation in timing conditioned by presence/absence of lexical tone • speakers with tone contrast will have competitive coupling (pos. C-V
 - lag)
 - speakers without tone contrast will have in-phase C-V timing (no C-V lag)
- H2: timing convergence:
 - all speakers will have similar coordination patterns despite interspeaker variation in presence/absence of tone
- What kind of tone contrast is there?

 - If H- \emptyset , then difference will be visible in high vs. low tone words • If H-L, then no difference in timing by tone.

EMA Study conclusions

- H1: variation in timing conditioned by presence/absence of lexical tone • speakers with tone contrast will have competitive coupling (pos. C-V
 - lag)
 - speakers without tone contrast will have in-phase C-V timing (no C-V lag)
- **V** H2: timing convergence:
 - all speakers have similar coordination patterns despite interspeaker variation in presence/absence of tone
- What kind of tone contrast is there?
 - If H- \emptyset , then difference will be visible in high vs. low tone words • **V** If **H-L**, then no difference in timing by tone.

The temporal basis of complex segments Shaw et al. 2019

The temporal basis of complex segments Shaw (2019): predictions

The temporal basis of complex segments Shaw (2019): results

Figure 4: Correlations for the data from the En-**Figure 2:** Correlations for the Russian data glish experiment

Tibetan dialects

59

Tibetan 杀了新了

- "archaic"/
 "cluster"
- "innovative"/ "non-cluster"
- dialect continuum
- post-1959 diaspora

Approx. extent of tone

Dialects: Natural laboratory

- tonogenesis
- laryngeal variation
- cluster simplification
- vowel shifts, spirantization, retroflexion, palatalization
- evidential, honorifics, modality, etc.

Written	Balti	Rebkong	Tokpe Gola	Gloss
(Classical)	(Western)	(Northeastern) (Central)		
Tibetan				
khrag	[kşʌk]	[tçy]	[ťʰík] ([ťʰák])	'blood'
rtswa	[xstsoa]	[xtsa]	[tsá]	'grass'
spyang ki	[spjaŋ.'ku]	[xtçaŋ.'kʰɣ]	[t∫áŋ.gú]	'wolf'
bcu bdun	[fçub.'dʊn]	[tçrb.'drn]	[t∫úp.tố́] ([t∫úp.tố́])	'sevente

(Adapted from Caplow 2013)

Tonogenesis (tonal dialects only)

• Voiceless onsets > high tone

• Voiced onsets > low tone

 Sonorants with pre-initial > high tone

*p^har 'over there' > H *sa 'earth' > H

*bar 'between' > L
 *za 'eat' > L
 *mar 'butter' > L

• *sman 'medicine' > H

Laryngeal contrasts

	Etymological onsets							Innovative features
Orthography	2 1	ح م.	ㅋ `	원	ح ال.	⊐ .	ন্ব	
Old Tibetan	s ^ə pa	p ^h a	ba	s ^ə ba	sa	za	b ^ə za	aspiration allphonic
Northeastern and Western dialects	spa	p ^h a	ba ~ wa	вра	sa	za	za	cluster simplification <mark>aspirated/unaspirated</mark> cor
Eastern dialects	pá	p ^h á	pà	bà	sá	zà	zà	tonogenesis cluster simplification
Central dialects (Lhasa)	pá	p ^h á	p ^h à	pà	sá	sà	sà	voiced clusters > voiceles voiced simplex > aspirate

Interactive Sagittal Section

Coordinating gestures in time

- Gestural coupling modes:
 - In-phase coupling: (synchronous) and Anti-phase coupling (sequential) are most stable
 - Competitive coupling: combination of inphase and anti-phase coupling relations
 - *Eccentric coupling*: one coupling relation, just not intrinsically stable

(Nam & Saltzman 2003, Nam et al. 2009, Goldstein 2011)

Competitive

Anti-Phase C ----▶ C

Eccentric

Two systems of laryngeal contrasts even in speakers with no F0 contrast (!!!)

- Both conditioned by etymological tone category:
- Left speaker
 - no prevoicing
 - long VOT only with H tone
- Right speaker:
 - prevoicing with L tone
 - long VOT with both tones

Does H have higher pitch than L? Yes for 11/19, no for 7/19

Η

There's another problem WHEN DOES A GESTURE START Velocity zero-crossing? Velocity 20% of peak? Acceleration maximum? Divergence from repetitions? front • • • Tongue Dorsum back LA

Lip open Aperture closed

600

Articulatory simulation TADA: Task Dynamics Application (Nam et al. 2004)

Articulatory simulation TADA: Task Dynamics Application (Nam et al. 2004)

Images from a different study sanity-checking the Tibetan experiment results

(Geissler 2022)

<five> study: methods O'Reilly, Geissler, & Tang (2023)

- Ideal test case?
 - diphthongs: all four modes
 - C's with lips, V's with tongue
 - available data

Timing in phonology and/or phonetics?

- "Discrete Phonology" vs. "Gradient Phonetics"
- Speech timing as phonology

 - Is timing *intrinsic* or *extrinsic* to phonology? • Are gestures coordinated at beginning or end? • Symbolic vs. phonetically-enriched representations?

(Turk & Shattuck-Hufnagel 2021)